
Styling Maps Using CartoCSS

With CartoCSS you style a layer by setting properties on a layer's features. You do this by
writing a series of statements. A statement takes the following form:

selector {

property: value;

}

Use as many property-value pairs in a statement as is necessary.

Common properties

Markers (points)

marker-fill inner part's color (color string)

marker-fill-opacity inner part's opacity (0 to 1, lower is less visible)

marker-line-color outer part's color

marker-line-opacity outer part's opacity

marker-height height (number, pixels)

marker-width width (number, pixels)

marker-allow-overlap draw all markers, even if they'll overlap (true/false)

Lines

line-color color of line (color string)

line-width width of line (number, pixels)

line-opacity opacity of line (see marker-fill-opacity)

Polygons

polygon-fill color of inside of polygon

polygon-opacity opacity of inside of polygon

(Style the outside of polygons using line-* properties.)

See all properties in the official documentation: http://bit.ly/cartocss-docs

Advanced selectors

Selectors

You need to select a layer in order to style the features on that layer. In CartoDB, this is just
the name of the table you are styling, followed by #. So if you uploaded a table called
mysecretlocations, you could give all the markers on that layer a width of 3 using this
statement:

#mysecretlocations {

marker-width: 3;

}

Conditional selectors

Style by the zoom level of the map:

#layer-name[zoom >= 5] { ... }

Style features by their attributes:

#layer-name[attribute = value] { ... }

for example, if the attribute (column in CartoDB) is text:

#buildings[state = 'New York'] { ... }

If the column is a number:

#buildings[height > 50] { ... }

Use any of the following in your conditional selectors:

= (equal),

!= (not equal),

>= (greater than or equal),

<= (less than or equal),

> (greater than),

< (less than)

Combining selectors

You can combine conditional selectors by putting them right next to each other:

#layer-name[attr1 = value1][attr2 > value2] { ... }

This statement will only apply to features where all conditions are true. You can combine as
many conditions as needed in this way. For example, to style buildings in New York over 50
feet tall, you might write:

#buildings[state = 'New York'][height > 50] { ... }

If you find yourself writing things like this to apply styles when one condition or the other is
true (attr1 = value1 OR attr2 > value2):

#layer-name[attr1 = value1] {

property: value;

}

#layer-name[attr2 > value2] {

property: value;

}

consider separating the selectors with a comma:

#layer-name[attr1 = value1],

#layer-name[attr2 > value2] {

property: value;

}

This does the same thing, but you don't have to repeat the styles (property: value) and if
you have to change it later it will be faster.

Finally, you can nest statements. This says the same thing as the statement above:

#layer-name {

[attr1 = value1],

[attr2 > value2] {

property: value;

}

}

Let's make this more concrete:

#buildings {

[state = 'New York'],

[height > 50] {

marker-fill: red;

}

}

This styles features in the buildings layer that either have state set to New York or
height greater than 50 such that their marker fill is red.

You will likely use multiple statements on one map:

#layer-name[zoom >= 5] { ... }

#layer-name[zoom >= 10] { ... }

#layer-name[zoom >= 15] { ... }

but it is equivalent and preferred that these statements are nested:

#layer-name {

[zoom >= 5] { ... }

[zoom >= 10] { ... }

[zoom >= 15] { ... }

}

Variables

Sometimes you will find yourself repeating values in your statements. Your statements can be
made more flexible using variables. Creating a variable looks like this:

@variable: value;

for example:

@roadcolor: #ff307a;

Then, instead of using the value in your statements, use @variable. For example:

#roads {

line-color: @roadcolor;

}

	Styling Maps Using CartoCSS
	Common properties
	Markers (points)
	Lines
	Polygons

	Advanced selectors
	Selectors
	Conditional selectors
	Combining selectors

	Variables

